3.9.15 \(\int \frac {(e x)^{7/2} (A+B x^2)}{(a+b x^2)^{5/2}} \, dx\) [815]

3.9.15.1 Optimal result
3.9.15.2 Mathematica [C] (verified)
3.9.15.3 Rubi [A] (verified)
3.9.15.4 Maple [A] (verified)
3.9.15.5 Fricas [C] (verification not implemented)
3.9.15.6 Sympy [F(-1)]
3.9.15.7 Maxima [F]
3.9.15.8 Giac [F]
3.9.15.9 Mupad [F(-1)]

3.9.15.1 Optimal result

Integrand size = 26, antiderivative size = 208 \[ \int \frac {(e x)^{7/2} \left (A+B x^2\right )}{\left (a+b x^2\right )^{5/2}} \, dx=-\frac {(A b-3 a B) e (e x)^{5/2}}{3 b^2 \left (a+b x^2\right )^{3/2}}+\frac {2 B (e x)^{9/2}}{3 b e \left (a+b x^2\right )^{3/2}}-\frac {5 (A b-3 a B) e^3 \sqrt {e x}}{6 b^3 \sqrt {a+b x^2}}+\frac {5 (A b-3 a B) e^{7/2} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right ),\frac {1}{2}\right )}{12 \sqrt [4]{a} b^{13/4} \sqrt {a+b x^2}} \]

output
-1/3*(A*b-3*B*a)*e*(e*x)^(5/2)/b^2/(b*x^2+a)^(3/2)+2/3*B*(e*x)^(9/2)/b/e/( 
b*x^2+a)^(3/2)-5/6*(A*b-3*B*a)*e^3*(e*x)^(1/2)/b^3/(b*x^2+a)^(1/2)+5/12*(A 
*b-3*B*a)*e^(7/2)*(cos(2*arctan(b^(1/4)*(e*x)^(1/2)/a^(1/4)/e^(1/2)))^2)^( 
1/2)/cos(2*arctan(b^(1/4)*(e*x)^(1/2)/a^(1/4)/e^(1/2)))*EllipticF(sin(2*ar 
ctan(b^(1/4)*(e*x)^(1/2)/a^(1/4)/e^(1/2))),1/2*2^(1/2))*(a^(1/2)+x*b^(1/2) 
)*((b*x^2+a)/(a^(1/2)+x*b^(1/2))^2)^(1/2)/a^(1/4)/b^(13/4)/(b*x^2+a)^(1/2)
 
3.9.15.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.11 (sec) , antiderivative size = 116, normalized size of antiderivative = 0.56 \[ \int \frac {(e x)^{7/2} \left (A+B x^2\right )}{\left (a+b x^2\right )^{5/2}} \, dx=\frac {e^3 \sqrt {e x} \left (15 a^2 B+b^2 x^2 \left (-7 A+4 B x^2\right )+a \left (-5 A b+21 b B x^2\right )+5 (A b-3 a B) \left (a+b x^2\right ) \sqrt {1+\frac {b x^2}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-\frac {b x^2}{a}\right )\right )}{6 b^3 \left (a+b x^2\right )^{3/2}} \]

input
Integrate[((e*x)^(7/2)*(A + B*x^2))/(a + b*x^2)^(5/2),x]
 
output
(e^3*Sqrt[e*x]*(15*a^2*B + b^2*x^2*(-7*A + 4*B*x^2) + a*(-5*A*b + 21*b*B*x 
^2) + 5*(A*b - 3*a*B)*(a + b*x^2)*Sqrt[1 + (b*x^2)/a]*Hypergeometric2F1[1/ 
4, 1/2, 5/4, -((b*x^2)/a)]))/(6*b^3*(a + b*x^2)^(3/2))
 
3.9.15.3 Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 217, normalized size of antiderivative = 1.04, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {363, 252, 252, 266, 761}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(e x)^{7/2} \left (A+B x^2\right )}{\left (a+b x^2\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 363

\(\displaystyle \frac {(A b-3 a B) \int \frac {(e x)^{7/2}}{\left (b x^2+a\right )^{5/2}}dx}{b}+\frac {2 B (e x)^{9/2}}{3 b e \left (a+b x^2\right )^{3/2}}\)

\(\Big \downarrow \) 252

\(\displaystyle \frac {(A b-3 a B) \left (\frac {5 e^2 \int \frac {(e x)^{3/2}}{\left (b x^2+a\right )^{3/2}}dx}{6 b}-\frac {e (e x)^{5/2}}{3 b \left (a+b x^2\right )^{3/2}}\right )}{b}+\frac {2 B (e x)^{9/2}}{3 b e \left (a+b x^2\right )^{3/2}}\)

\(\Big \downarrow \) 252

\(\displaystyle \frac {(A b-3 a B) \left (\frac {5 e^2 \left (\frac {e^2 \int \frac {1}{\sqrt {e x} \sqrt {b x^2+a}}dx}{2 b}-\frac {e \sqrt {e x}}{b \sqrt {a+b x^2}}\right )}{6 b}-\frac {e (e x)^{5/2}}{3 b \left (a+b x^2\right )^{3/2}}\right )}{b}+\frac {2 B (e x)^{9/2}}{3 b e \left (a+b x^2\right )^{3/2}}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {(A b-3 a B) \left (\frac {5 e^2 \left (\frac {e \int \frac {1}{\sqrt {b x^2+a}}d\sqrt {e x}}{b}-\frac {e \sqrt {e x}}{b \sqrt {a+b x^2}}\right )}{6 b}-\frac {e (e x)^{5/2}}{3 b \left (a+b x^2\right )^{3/2}}\right )}{b}+\frac {2 B (e x)^{9/2}}{3 b e \left (a+b x^2\right )^{3/2}}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {(A b-3 a B) \left (\frac {5 e^2 \left (\frac {\sqrt {e} \left (\sqrt {a} e+\sqrt {b} e x\right ) \sqrt {\frac {a e^2+b e^2 x^2}{\left (\sqrt {a} e+\sqrt {b} e x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{a} b^{5/4} \sqrt {a+b x^2}}-\frac {e \sqrt {e x}}{b \sqrt {a+b x^2}}\right )}{6 b}-\frac {e (e x)^{5/2}}{3 b \left (a+b x^2\right )^{3/2}}\right )}{b}+\frac {2 B (e x)^{9/2}}{3 b e \left (a+b x^2\right )^{3/2}}\)

input
Int[((e*x)^(7/2)*(A + B*x^2))/(a + b*x^2)^(5/2),x]
 
output
(2*B*(e*x)^(9/2))/(3*b*e*(a + b*x^2)^(3/2)) + ((A*b - 3*a*B)*(-1/3*(e*(e*x 
)^(5/2))/(b*(a + b*x^2)^(3/2)) + (5*e^2*(-((e*Sqrt[e*x])/(b*Sqrt[a + b*x^2 
])) + (Sqrt[e]*(Sqrt[a]*e + Sqrt[b]*e*x)*Sqrt[(a*e^2 + b*e^2*x^2)/(Sqrt[a] 
*e + Sqrt[b]*e*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[e*x])/(a^(1/4)*Sqrt[ 
e])], 1/2])/(2*a^(1/4)*b^(5/4)*Sqrt[a + b*x^2])))/(6*b)))/b
 

3.9.15.3.1 Defintions of rubi rules used

rule 252
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x 
)^(m - 1)*((a + b*x^2)^(p + 1)/(2*b*(p + 1))), x] - Simp[c^2*((m - 1)/(2*b* 
(p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c 
}, x] && LtQ[p, -1] && GtQ[m, 1] &&  !ILtQ[(m + 2*p + 3)/2, 0] && IntBinomi 
alQ[a, b, c, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 363
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2), x 
_Symbol] :> Simp[d*(e*x)^(m + 1)*((a + b*x^2)^(p + 1)/(b*e*(m + 2*p + 3))), 
 x] - Simp[(a*d*(m + 1) - b*c*(m + 2*p + 3))/(b*(m + 2*p + 3))   Int[(e*x)^ 
m*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b*c - a*d 
, 0] && NeQ[m + 2*p + 3, 0]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 
3.9.15.4 Maple [A] (verified)

Time = 4.22 (sec) , antiderivative size = 283, normalized size of antiderivative = 1.36

method result size
elliptic \(\frac {\sqrt {e x}\, \sqrt {\left (b \,x^{2}+a \right ) e x}\, \left (\frac {a \,e^{3} \left (A b -B a \right ) \sqrt {b e \,x^{3}+a e x}}{3 b^{5} \left (x^{2}+\frac {a}{b}\right )^{2}}-\frac {e^{4} x \left (7 A b -13 B a \right )}{6 b^{3} \sqrt {\left (x^{2}+\frac {a}{b}\right ) b e x}}+\frac {2 B \,e^{3} \sqrt {b e \,x^{3}+a e x}}{3 b^{3}}+\frac {\left (\frac {\left (A b -2 B a \right ) e^{4}}{b^{3}}-\frac {e^{4} \left (7 A b -13 B a \right )}{12 b^{3}}-\frac {B \,e^{4} a}{3 b^{3}}\right ) \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b \sqrt {b e \,x^{3}+a e x}}\right )}{e x \sqrt {b \,x^{2}+a}}\) \(283\)
default \(\frac {\left (5 A \sqrt {-a b}\, \sqrt {2}\, \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, F\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) b^{2} x^{2}-15 B \sqrt {-a b}\, \sqrt {2}\, \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, F\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) a b \,x^{2}+5 A \sqrt {2}\, \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, F\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) \sqrt {-a b}\, a b -15 B \sqrt {2}\, \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, F\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) \sqrt {-a b}\, a^{2}+8 b^{3} B \,x^{5}-14 A \,b^{3} x^{3}+42 B a \,b^{2} x^{3}-10 a \,b^{2} A x +30 a^{2} b B x \right ) e^{3} \sqrt {e x}}{12 x \,b^{4} \left (b \,x^{2}+a \right )^{\frac {3}{2}}}\) \(439\)
risch \(\frac {2 B x \sqrt {b \,x^{2}+a}\, e^{4}}{3 b^{3} \sqrt {e x}}+\frac {\left (\frac {3 A \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{\sqrt {b e \,x^{3}+a e x}}-\frac {7 B a \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b \sqrt {b e \,x^{3}+a e x}}+3 a^{2} \left (A b -B a \right ) \left (\frac {\sqrt {b e \,x^{3}+a e x}}{3 a e \,b^{2} \left (x^{2}+\frac {a}{b}\right )^{2}}+\frac {5 x}{6 a^{2} \sqrt {\left (x^{2}+\frac {a}{b}\right ) b e x}}+\frac {5 \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{12 a^{2} b \sqrt {b e \,x^{3}+a e x}}\right )-3 a \left (2 A b -3 B a \right ) \left (\frac {x}{a \sqrt {\left (x^{2}+\frac {a}{b}\right ) b e x}}+\frac {\sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{2 a b \sqrt {b e \,x^{3}+a e x}}\right )\right ) e^{4} \sqrt {\left (b \,x^{2}+a \right ) e x}}{3 b^{3} \sqrt {e x}\, \sqrt {b \,x^{2}+a}}\) \(610\)

input
int((e*x)^(7/2)*(B*x^2+A)/(b*x^2+a)^(5/2),x,method=_RETURNVERBOSE)
 
output
1/e/x*(e*x)^(1/2)/(b*x^2+a)^(1/2)*((b*x^2+a)*e*x)^(1/2)*(1/3*a*e^3/b^5*(A* 
b-B*a)*(b*e*x^3+a*e*x)^(1/2)/(x^2+a/b)^2-1/6/b^3*e^4*x*(7*A*b-13*B*a)/((x^ 
2+a/b)*b*e*x)^(1/2)+2/3*B/b^3*e^3*(b*e*x^3+a*e*x)^(1/2)+((A*b-2*B*a)*e^4/b 
^3-1/12/b^3*e^4*(7*A*b-13*B*a)-1/3*B/b^3*e^4*a)*(-a*b)^(1/2)/b*((x+(-a*b)^ 
(1/2)/b)/(-a*b)^(1/2)*b)^(1/2)*(-2*(x-(-a*b)^(1/2)/b)/(-a*b)^(1/2)*b)^(1/2 
)*(-x/(-a*b)^(1/2)*b)^(1/2)/(b*e*x^3+a*e*x)^(1/2)*EllipticF(((x+(-a*b)^(1/ 
2)/b)/(-a*b)^(1/2)*b)^(1/2),1/2*2^(1/2)))
 
3.9.15.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 179, normalized size of antiderivative = 0.86 \[ \int \frac {(e x)^{7/2} \left (A+B x^2\right )}{\left (a+b x^2\right )^{5/2}} \, dx=-\frac {5 \, {\left ({\left (3 \, B a b^{2} - A b^{3}\right )} e^{3} x^{4} + 2 \, {\left (3 \, B a^{2} b - A a b^{2}\right )} e^{3} x^{2} + {\left (3 \, B a^{3} - A a^{2} b\right )} e^{3}\right )} \sqrt {b e} {\rm weierstrassPInverse}\left (-\frac {4 \, a}{b}, 0, x\right ) - {\left (4 \, B b^{3} e^{3} x^{4} + 7 \, {\left (3 \, B a b^{2} - A b^{3}\right )} e^{3} x^{2} + 5 \, {\left (3 \, B a^{2} b - A a b^{2}\right )} e^{3}\right )} \sqrt {b x^{2} + a} \sqrt {e x}}{6 \, {\left (b^{6} x^{4} + 2 \, a b^{5} x^{2} + a^{2} b^{4}\right )}} \]

input
integrate((e*x)^(7/2)*(B*x^2+A)/(b*x^2+a)^(5/2),x, algorithm="fricas")
 
output
-1/6*(5*((3*B*a*b^2 - A*b^3)*e^3*x^4 + 2*(3*B*a^2*b - A*a*b^2)*e^3*x^2 + ( 
3*B*a^3 - A*a^2*b)*e^3)*sqrt(b*e)*weierstrassPInverse(-4*a/b, 0, x) - (4*B 
*b^3*e^3*x^4 + 7*(3*B*a*b^2 - A*b^3)*e^3*x^2 + 5*(3*B*a^2*b - A*a*b^2)*e^3 
)*sqrt(b*x^2 + a)*sqrt(e*x))/(b^6*x^4 + 2*a*b^5*x^2 + a^2*b^4)
 
3.9.15.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(e x)^{7/2} \left (A+B x^2\right )}{\left (a+b x^2\right )^{5/2}} \, dx=\text {Timed out} \]

input
integrate((e*x)**(7/2)*(B*x**2+A)/(b*x**2+a)**(5/2),x)
 
output
Timed out
 
3.9.15.7 Maxima [F]

\[ \int \frac {(e x)^{7/2} \left (A+B x^2\right )}{\left (a+b x^2\right )^{5/2}} \, dx=\int { \frac {{\left (B x^{2} + A\right )} \left (e x\right )^{\frac {7}{2}}}{{\left (b x^{2} + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate((e*x)^(7/2)*(B*x^2+A)/(b*x^2+a)^(5/2),x, algorithm="maxima")
 
output
integrate((B*x^2 + A)*(e*x)^(7/2)/(b*x^2 + a)^(5/2), x)
 
3.9.15.8 Giac [F]

\[ \int \frac {(e x)^{7/2} \left (A+B x^2\right )}{\left (a+b x^2\right )^{5/2}} \, dx=\int { \frac {{\left (B x^{2} + A\right )} \left (e x\right )^{\frac {7}{2}}}{{\left (b x^{2} + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate((e*x)^(7/2)*(B*x^2+A)/(b*x^2+a)^(5/2),x, algorithm="giac")
 
output
integrate((B*x^2 + A)*(e*x)^(7/2)/(b*x^2 + a)^(5/2), x)
 
3.9.15.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(e x)^{7/2} \left (A+B x^2\right )}{\left (a+b x^2\right )^{5/2}} \, dx=\int \frac {\left (B\,x^2+A\right )\,{\left (e\,x\right )}^{7/2}}{{\left (b\,x^2+a\right )}^{5/2}} \,d x \]

input
int(((A + B*x^2)*(e*x)^(7/2))/(a + b*x^2)^(5/2),x)
 
output
int(((A + B*x^2)*(e*x)^(7/2))/(a + b*x^2)^(5/2), x)